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Abstract: The increasing penetration of distributed generation (DG) significantly
complicates Distribution System State Estimation (DSSE) by introducing stochasticity
and uncertainty. This paper proposes a novel DSSE framework that unlike conventional
methods simultaneously estimates the system state, load demands, and DGs output
power through a unified constrained optimization model. The model is efficiently
solved using the Whale Optimization Algorithm (WOA), whose unique balance of
exploration and exploitation enables robust solution search in complex, active
distribution networks. Simulation studies on standard IEEE 37-bus and 69-bus test
systems reveal that the proposed WOA-based approach achieves outstanding accuracy.
For the 37-bus system, WOA attains a Maximum Individual Relative Error (MIRE) of
1.15% and a Maximum Individual Absolute Error (MIAE) of 2.303 on load estimation.
On the larger 69-bus system, the method further reduces these errors yielding a MIRE
of 0.886% and a MIAE of 1.12 for load, and 0.73% and 1.058 for DG power
estimation, respectively. Across all experiments, WOA consistently outperforms
leading metaheuristics including ABC, PSO, and GA highlighting its superior accuracy,
scalability, and robustness for real-world DSSE challenges.
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1 Introduction

N the field of power system state estimation (SE),

many studies have been carried out. There is always
a need for a system model for studying, planning,
increasing system security, and economic load
distribution to reduce production costs and losses, etc.
This model includes parameters of series and parallel
lines, models of transformers, generators, compensators,
and other elements used in the power system. The
system model can be very complex and include non-
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linear equations, or it can be simplified and modeled
linearly. Therefore, various models with different
accuracies can be considered for the system. In [1, 2], a
method for updating the parameters based on the
residual vector analysis was presented. In this method, a
relationship between the residual and the parameter error
was used. In each step, after estimating the state using
the residuals, the parameters' error is calculated; in this
way, the parameters are updated. This method requires a
shorter solution time. Another parameter estimation
method is the expansion of the state vector with the
parameters of the system. In this method, the
incorporation of additional unknown parameters into the
state vector will transform the problem into an ill-
conditioned one [3, 4]. The most practical of these
methods is solving the problem with the Kalman filter
[5, 6]. In [7], a method was presented to link the SE and
system parameters using phasor measurement units. In
this method, the state and parameters of the system are
estimated, and their changes are followed dynamically.
In recent years, to estimate the state of the distribution
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system, methods based on algorithms to minimize the
amount of error have been used more than other
methods. In this regard, the particle swarm algorithm [8,
9], the training-based algorithm [10], and the genetic
algorithm [11] can be mentioned. In algorithm-based
methods, to estimate the state of the distribution system,
an objective function of the square of the error is
considered, and optimization algorithms always try to
minimize this function so that the estimated values are
closer to the actual values. The SE is typically
formulated as a weighted least squares problem. The SE
methods are broadly classified into two categories: The
first category is based on statistical criteria, including the
maximum likelihood criterion, minimum variance
criterion, and weighted least squares criterion [12-14].
The second approach is the power flow-based SE
formulation [15-17]. The Weighted Least Squares
(WLS) method has been predominantly utilized in most
SE research; however, these approaches typically fail to
account for short-term load variations occurring within
the data transmission intervals of smart meters, which
are conventionally set at 15-minute defaults. Reference
[16] demonstrates that employing smart meters enhances
the accuracy of SE. However, in that study, whenever an
estimation was required within the interval between two
data transmissions, the data from the beginning of the
interval were utilized, and load variations were not
accounted for. In [17], the author considers two levels of
error (2% or 10%) for smart meter measurements. In
contrast, the author of [16] assumes a uniform 10% error
for all measurements obtained from the meters. A review
of existing research in this domain reveals that previous
investigators addressed the lack of information between
consecutive measurement intervals by incorporating a
fixed percentage of error. Consequently, the resulting
estimates lacked high accuracy. In reference [13], a
novel methodology is introduced which formulates load
variations occurring within the data transmission
intervals and subsequently modifies the error
relationship in the WLS method. The results obtained
through this approach are compared with those from
traditional SE techniques. Reference [14] presents a new
method for SE in active distribution systems. This
approach employs metaheuristic algorithms while
incorporating multi-scale considerations for various
measurement devices.

The integration of distributed energy resources presents
significant challenges for DSSE, requiring advanced
methodologies to handle uncertainties in renewable
generation and load patterns. Hybrid approaches
combining traditional methods with intelligent
algorithms show promising results in improving
estimation accuracy under limited measurement
conditions. In this context, a comparative analysis of the
artificial bee colony (ABC) algorithm [18-20], particle
swarm optimization (PSO) algorithm [21, 22], optimal

honey bee mating algorithm (OHBMA) [23, 24],
artificial neural network (ANN) [25, 26], ant colony
optimization (ACO) algorithm [27, 28], genetic
algorithm (GA) [29, 30], quantum-inspired evolutionary
algorithm (QIEA) [31, 32], greedy randomized adaptive
search procedure (GRASP) [33, 34] algorithm, and
Whale Optimization Algorithm (WOA) [35] was
presented in Table 1, which demonstrates the superiority
of the WOA over other algorithms. Therefore, in this
paper, we employed the WOA. Furthermore, the
integration of DGs introduces significant challenges not
only for state estimation but also for system protection
and transient stability, as discussed in [36]. While the
aforementioned studies have contributed to the field of
DSSE, a significant research gap remains in developing
a methodology that simultaneously delivers high
estimation accuracy, robustness against measurement
uncertainties, and computational efficiency for large-
scale active distribution networks with high penetration
of stochastic DGs. Many existing metaheuristic
approaches, as summarized in Table 1, often suffer from
limitations such as premature convergence (e.g., PSO),
high computational complexity (e.g., OHBMA), or poor
scalability. This paper bridges this gap by proposing a
novel DSSE framework that leverages the WOA. The
WOA is selected for its proven superiority in global
optimization, evidenced in Table 1, particularly its
unique bubble-net foraging mechanism that provides an
exceptional  balance  between  exploration and
exploitation, making it ideally suited to handle the non-
convex and constrained optimization problem inherent in
accurate DSSE with DGs. The primary contributions of
this work are: The formulation of a comprehensive
DSSE problem that simultaneously estimates system
state, load demand, and DG output power under practical
operational constraints. The novel application and
validation of the WOA as a superior solver for this
complex estimation problem in active distribution
networks. A rigorous comparative analysis against eight
established metaheuristic algorithms on standard IEEE
test systems, demonstrating the WOA's superior
accuracy and robustness through quantitative indices.

This paper is structured as follows: Section 2 expresses
the DSSE method. In section 3, the solution framework
utilizing WOA is given. The simulation results are
demonstrated in section 4. Finally, section 5 concludes
the paper.

2 The DSSE method

A precise system model is essential for conducting
studies, planning operations, optimizing economic load
dispatch, and enhancing system security. Such a model
incorporates the parameters of loads, generation units,
distribution lines, generators, and other components
within the distribution feeder. The complexity of this
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Table 1: A comparative analysis of the WOA and other metaheuristic algorithms

Convergence Speed

Average Error

Noise Tolerance Computational Time Success Rate

Algorithm (Iterations) Rate (%) (%) ©) (%)
ABC [18-20] 80-120 1.8-2.5 15-20 25-35 85-90
PSO [21, 22] 50-80 2.0-3.0 10-15 30-40 80-85

OHBMA [23, 24] 70-100 1.5-2.2 18-22 35-45 88-92
ANN [25, 26] N/A (Training Dependent) 3.0-5.0 12-18 15-25 (Inference) 90-95
ACO [27, 28] 100-150 2.2-32 8-12 40-60 75-82

GA [29, 30] 120-180 2.5-3.8 10-15 45-65 78-85

QIEA [31, 32] 60-90 1.6-2.4 20-25 25-35 87-93
GRASP [33, 34] 40-70 1.8-2.8 15-20 20-30 92-96
WOA [35] 40-60 0.8-1.5 25-30 18-28 95-98

model can vary significantly, ranging from a detailed
representation involving non-linear equations to a
simplified linear formulation. Consequently, a spectrum
of models with varying degrees of accuracy can be
developed for the system.

Among the most critical parameters within the system
model are the network load demand and the power
generation capacity of DG sources. Numerous
algorithms have been proposed for estimating
distribution feeder parameters. Classical, theory-based
methods, for instance, leverage factors such as ambient
conditions and historical consumer load profiles to
estimate net load and DG output. However, the actual
values of these input factors often deviate from those
used in the calculations, while inherent uncertainties
further diminish the accuracy of parameter estimation.

To obtain more precise values for distribution system
parameters, estimation methods are employed. These
techniques utilize a combination of real-time
measurements including voltage, current, and power
taken from buses and lines across the network. The data
is transmitted to dedicated software, which processes it
through a programmed algorithm to yield the parameter
estimates.

Real-time parameter calculation algorithms can be
broadly categorized into two main groups:

o Algorithms that calculate the parameters directly by
measuring the network operational parameters.

o Algorithms that use the SE algorithm to estimate the
parameters.

2.1 Parameter estimation method using SE algorithm

As previously established, acquiring accurate, real-
time parameters of the distribution system is a
fundamental prerequisite. The SE algorithm, in
particular, is predicated on the availability of correct
network parameters to yield reliable results. Inaccurate
parameters inevitably degrade the precision of the SE
output.

To address this critical dependency, numerous
algorithms have been proposed with the objective of
identifying parameter errors and correcting them,
thereby enhancing the overall accuracy of the SE
process. These approaches, often termed parameter
estimation, are frequently integrated with the SE method
itself. In this integrated framework, parameter estimation
operates as a methodology based on the system's SE.

The underlying procedure typically involves assigning
initial values to the parameters. A SE is then executed,
following which the precise values of the imprecise
parameters are determined. The methods developed for
handling parameter error within the SE algorithm can be
classified into two primary categories:

e The method based on residual sensitivity analysis [1,
2].
¢ The method based on state vector expansion [3, 4].

As the nomenclature suggests, the first method
initiates with assumed parameter values and completes a
full SE cycle. Subsequently, by establishing a
relationship between the parameter errors and the
estimation residuals, the correct parameter values are
derived. In contrast, the second method incorporates the
parameters directly into the state vector of the SE
algorithm, enabling the simultaneous execution of state
and parameter estimation.

Within the first category (residual sensitivity
analysis), the SE equation is decoupled into two separate
equations concerning state variables and network
parameters, respectively. This technique follows a
sequential process: SE is performed first, followed by
parameter updating. This two-step sequence constitutes
one iteration, which is repeated until both the parameters
and state variables converge to their final values. A
significant drawback of this method is its considerable
computational demand and time consumption.

Iranian Journal of Electrical & Electronic Engineering, Vol. 22, No. 02, June 2026 3



Consequently, alternative approaches for updating
variables are often preferred. One such technique
leverages residual vector analysis. This method utilizes a
defined relationship between the residuals and parameter
errors. In each iteration, following the SE, the parameter
errors are calculated directly from the residuals, and the
parameters are updated accordingly, leading to a
substantially reduced solution time.

The foundation of the second major category (state
vector expansion) is the augmentation of the state vector
by appending the network parameters to it. This
formulation allows for the combined state and parameter
estimation problem to be solved simultaneously within a
single, integrated computational framework.

2.2 State estimation in active distribution system

The SE utilizing real-time measurement data,
constitutes a fundamental component of modern
distribution systems. The system state is defined by a set
of simultaneous values representing the positive-
sequence voltage phasors at all network buses.
Estimating this state requires the real-time solution of an
extensive set of non-linear equations. Static SE performs
this analysis by processing a set of measurements taken
from various network points at a specific point in time.
The non-linear relationship between the measurement

vector z and the state vector X is given by the following

equation [13]:
Z=FX)+¢ )

where ¢ is a random noise vector with Gaussian
distribution, and F is a vector of equations relating the
state variables to the measurements.

Static SE is formulated within the WLS framework
and solved through an iterative numerical algorithm. At
each iteration, the solution procedure corresponds to
solving a linearized approximation of the original
problem. A prevalent solution strategy involves the
decoupling of measurement and state vectors into their
respective real and imaginary components. This
approach transforms the SE problem into solving two
independent linear equations using the WLS method.
The solution for each decoupled equation is expressed as
follows [13]:

x = (HTR"H)"'HTR 1z 2)

where x is the estimated state vector, R is the diagonal
matrix that expresses the covariance of the ¢ matrix, and
H is the Jacobian matrix. The residual vector r is defined
as r = z-Hx, which can be represented as follows:

r={—-M)e 3)
M = H(HTR™'H)"'HTR™! 4)

The system state variables can be determined through
iterative computation using Equation (4). However, it is
important to recognize that these estimated values
contain inherent inaccuracies due to errors in the
parameters available to the SE algorithm. Consequently,
to address this limitation and enhance parameter
accuracy, dedicated parameter estimation algorithms
have been developed, which form a distinct class of
computational methods for parameter correction and
refinement.

2.3 Objective function and constraints of the

estimation problem

The accurate estimation of distribution system
parameters via optimization algorithms necessitates the
formulation of an appropriate objective function to
minimize the discrepancy between estimated and
measured (actual) values. In this work, we define the
objective function for the proposed WOA as Equation
(5) [13, 14], which is minimized during the optimization
process:

min EGO) = ) [M; = $;(O 5)
i=1

where X, M, S, and m are the state vector, the
measured values, the state equation of the measured
values, and the number of measurements, respectively.
This formulation employs the square power of the
measurement residuals to enhance estimation accuracy,
particularly in mitigating the influence of minor
measurement errors on state variable calculations. The
optimization constraints incorporated in the distribution
feeder model align with established practices in the field,
encompassing fundamental operational considerations
such as active and reactive power optimization, load
allocation, load shedding protocols, and optimal DG
placement. The specific constraints governing the DSSE
are delineated as follows [37]:
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e The limitation of bus voltage range:
y M <y, <y M (6)

The voltage of all buses in the distribution feeder should
be within the permissible range.

e The limitation of line power capacity:
[P <P @)

In the above equation, P; is the power passing through

line / and PIM“v is its maximum capacity. It shows the

overload limit on each distribution line and facilitates the
possible operation or load sharing.

o The limitation of reactive power of capacitors:
0<Q, <oMN* ®)

where Q. is the amount of reactive power produced
by the capacitor connected to the i-th bus with the

Max
ci

maximum capacity Q" . These capacitors are installed

in optimal places to improve the power factor of the line
current and reduce power losses.

o The limitation of the production capacity of DGs:
Poi" < Py < Py ©

where P,. represents the active power produced by

DG connected to the i-th bus, and PRAfi” and PRAI.M are

the lower and upper limits of the DG power generation
capacity, respectively.

e The limitation of the load active power:

P <P, <P (10)

where P, , P!, and P!® are the load value, lower

limit, and upper limit of the load of the i-th bus,
respectively. If a deviation is observed in any node, it
will reduce the voltage in that node and, in the worst
case, may lead to a blackout.

The DSSE problem formulated in Equations (5) to
(10) constitutes a complex, non-convex, and constrained
optimization challenge. The non-linear power flow
constraints, coupled with the stochastic nature of DG
outputs and load variations, render traditional gradient-
based methods susceptible to convergence issues and
suboptimal solutions. To address these limitations and
achieve high-accuracy estimation, this paper employs
the WOA as the core solver. The WOA is a metaheuristic
technique renowned for its effective balance between
exploration and exploitation, its ability to handle non-
linear constraints without requiring gradient information,
and its demonstrated robustness in noisy environments.
As evidenced by the comparative analysis in Table 1,
these characteristics make it particularly suited for the
DSSE problem at hand. The following section details the
mechanics and computational steps of the WOA.

3 Solution Framework Using WOA

The humpback whale, a species of baleen whale, is
renowned for its sophisticated and cooperative foraging
strategy. This method, known as bubble-net feeding, is a
distinctive and complex predatory behavior. Humpback
whales typically target aggregations of small fish or krill
near the water's surface. It has been empirically observed
that they engage in this behavior by creating a circular or
spiral "net" of exhaled bubbles, which corrals the prey
and confines them into a denser mass, making them
easier to consume.

Inspired by this specific foraging mechanism, the
WOA is a metaheuristic, population-based optimization
technique. Its design mimics the bubble-net hunting
strategy to solve complex optimization problems,
demonstrating applicability across various engineering
and computational domains.

e The steps of the whale algorithm
The WOA through three
computational phases, as formalized in [35]:

executes distinct

(a) Prey Encirculation Phase:

Modeling the initial identification and surrounding of
promising regions in the search space.

(b) Bubble-net Attacking Strategy (Exploitation
Stage):
Implementing a spiral updating mechanism to simulate

the sophisticated bubble-net feeding behavior for local
search refinement.
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(c) Prey Search Operation (Exploration Stage):

Conducting global search through random position
updates to explore new solution domains.

(a) Prey Encirculation in the WOA

The WOA operates on the premise that humpback
whales can numerically determine the position of prey
and encircle it. Within the optimization framework, the
precise location of the global optimum in the search
space is unknown a priori. Consequently, the algorithm
postulates that the current best candidate solution
corresponds either to the target prey or represents a
position in close proximity to the optimal state.
Following the identification of this best search agent, all
other agents in the population systematically update their
positions relative to this leading solution. This collective
movement  toward the current optimum is
mathematically represented by the following equations
(11) and (12) [35, 38]:

D=[CX *()-X (t) (11)

X(@t+)=X"(t)-A.D (12)

where ¢ represents the last iteration, A and C are the
vector of coefficients, X* is the position vector of the

best solution that has been obtained so far, X is the

position vector, | | is the absolute value and is obtained

from the multiplication of matrices. It should be noted
that if there is a better solution, X* is updated in each

iteration. The vectors A and C are computed as follows:
13)
(14)

The parameter a undergoes a linear decrement from 2

Q)

2
=2

r—a

QO ~y

Y

to O throughout the iterative process, governing both
exploration and exploitation phases, while » represents a
stochastic vector with elements uniformly distributed
within the interval [0,1]. Figures 1(a) and 1(b) illustrate
the two-dimensional
representations of the search space within the WOA

and three-dimensional
framework, respectively. The positional coordinates (X,

Y) of any given search agent undergo iterative
refinement relative to the coordinates of the current
optimal solution (X* Y*), following the established

mathematical formulation of the algorithm.

(b) exploitation stage in the WOA
The mathematical modeling of the whale bubble-net

a)
XXy (e (XY
®
L
’~<
1 (X*-XY% (X% Y9 (X%
(Y (Y
Jxxyey | (xy-y (XYY
(. 1 (%
b)
. »yn . (XY
X*xvz |}
L oz [ XXz
(X$_X XZ*) I\. /‘ I\_ /‘ I\_ /‘
A g L
. X% 7+2) / ()/Y, 7%7) /
(XX ¥, 2%2) L _ ) - -
U 1 dermyy [/ 17
’ O ez
7 "y / ,\'\|
/ ) (/ vy 4
AL @z 10 (x v ze2)
(XX YL 282) ) 7 - L
L . O (v
[ B ,\’ \
(X*-X, Y*—KZ*_Z} (X W—XZ”:Z) (X Y=Y, 2*2)

Fig. 1. The space searched by a whale to encircle the prey (a) 2D
search space; (b) 3D search space [35]

foraging behavior is formalized through two distinct
methodological approaches:

1. The Shrinking Encryclement Mechanism: This
behavioral pattern is mathematically represented
through the systematic reduction of parameter a
in Equation (13). The oscillation amplitude of
coefficient A4 is consequently diminished

proportionally to the decreasing value of a.

Specifically, 4 is defined as a stochastic variable
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uniformly distributed within the interval [-a, a],
while a undergoes linear attenuation from 2 to 0
throughout successive iterations. Through the
strategic selection of randomized A values within
the bounded range [-1, 1], the subsequent position
of each search agent can be precisely determined
within the convex space delineated by its original
coordinates and the location of the current

optimal agent.

2. Spiral Updating Position Methodology: This
approach initiates by calculating the Euclidean
distance between the whale located at coordinates
(X, Y) and the prey, positioned at the current best-
known location (X* Y*). A subsequent phase
involves the mathematical formulation of a
helical path to emulate the distinctive spiral
movement observed in humpback whales during
bubble-net  feeding.  This
mathematically modeled to simulate the whale's

trajectory  is

motion towards the prey, as defined by the
following equation:

X (@+1)=D"e" .cosQrl)+X "(¢) (15)

The parameter D= |P(t) - X (©)| quantifies the
Euclidean distance between the i-th whale and the prey
position, which corresponds to the optimal solution
identified thus far. Here, b denotes a constant parameter
defining the logarithmic spiral geometry, / represents a
stochastic variable uniformly distributed within the
interval [—1, 1], and the operator (.) indicates element-
wise multiplication.

It is noteworthy that whales exhibit simultaneous
movement patterns around the prey, combining both a
constricting circular trajectory and a helical path. To
computationally model this complex behavior, the
algorithm incorporates a probabilistic selection
mechanism wherein either the encirclement contraction
method or the spiral updating model is chosen with
equal probability (50%) during each position update
iteration. This hybrid approach is mathematically
represented by the following equation:

X*(t) - AD ifp<05 (16)

Xt+1)= {q , ,
D’eblcos(2ml) + X*(t) if p=0.5

Within this formulation, the parameter p represents a
stochastic variable uniformly distributed across the
interval [0, 1]. Concurrently with the previously
described bubble-net foraging mechanism, humpback
whales additionally engage in stochastic exploration
behaviors to locate prey within the search space.

(¢) exploration stage in the WOA

During the exploration phase, the mathematical search
model utilizes variations in the vector 4 to facilitate a
global foraging strategy. In this operational mode, each
search agent updates its position stochastically by
referencing other randomly selected agents within the
population. To ensure sufficient dispersion from the

current reference whale, the algorithm employs values of
A with random magnitudes either less than -1 or greater
than 1.

Unlike the exploitation phase where positions are
updated relative to the best solution found, the
exploration phase incorporates randomly chosen search
agents to promote diversity in the search trajectory. This
strategic approach, particularly when |A| > 1, enables
comprehensive  global exploration and prevents
premature convergence. The mathematical formulation

governing this behavior is expressed as follows [35, 38]:
5 :‘C_;and _i‘ (17)
X(+)=X, (t)-AD (18)

where m represents a randomly selected whale
position from the current population.

Figure 2 illustrates various potential configurations in
the vicinity of a specific solution where the magnitude of

vector A exceeds unity. The WOA commences with a
randomly initialized population of candidate solutions.
During each iterative cycle, search agents adapt their
positions relative to either a randomly selected agent or
the current optimal solution identified thus far.

The parameter a is systematically modulated to
facilitate the transition between exploration and
exploitation phases, undergoing a linear decrease from 2
to 0 over successive iterations. The position update

mechanism employs stochastic selection when |K| >1
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Fig. 2. Exploration phase in the WOA (X* is an accidentally selected
search agent) [35]

to promote exploration, while preferentially utilizing the

|K| <1 to enhance
exploitation. The adaptive behavior of the algorithm is
further governed by parameter p, which determines
whether the movement pattern follows a spiral or
circular trajectory.

best-known solution when

The schematic diagram illustrating the workflow of the
hybrid WLS-WOA framework applied to DSSE was
presented in Figure 3. An overview of the entire process
was provided in Figure 4.

Active Electric Power Distribution System State Estimation:
WLS Method & Algorithm Comparison

Load & Distributed Generation Estimation Using WOA, ABC, and Benchmark Algorithms

S0 EOQE6 LS

Whale mim ABC  SpariceStram Articial Neural AntCololy  Genaatil Quantl-siphed Greedy Imized
Optimizaion Harmory Searce Optimwork  Neural
Agorithm arce e ACO Nettwon

[OHBMA) (CA (QIEA) (GRASP)

Scenario 1: IEEE 37-bus Scenario 2: IEEE 69-bus

Scenario 1: IEEE 37-bus Scenario 2: IEEE 69-bus

Whale Optimization Artificial Bee Avrtificial Couny Genetic
Algorithm (WOA) Colony (ABC) Optimization (ACO) Olgorithm (GA)
Sprticle Swarm Artificial Neural Genetic Q”é’\';‘gl’&‘i;::sre‘j
G
Optimization (PSO) Network (ANN) Algorithm (GA) Algorithm QIEA)
Greedy Randomized Adaptive Search
Procedure (GRASP)

Mean Index of Absolute Error (MIAE)

Algorithm

Opposition-Based Ant Colony Harmirr
Search (OHBMA) HiarmA

Mean Index of Relative Error (MIRE)

Fig. 4. Schematic diagram of the overall process

4. Simulation results

In this section, the results obtained from simulations
conducted in the MATLAB software environment are
analyzed and discussed. The simulations were carried
out for two scenarios using the standard IEEE 37-bus
and 69-bus distribution feeders. In both scenarios, the
proposed WOA was employed to estimate the network
load and the power generation capacity of distributed
generation resources within the studied feeders. The
optimization results obtained wusing the proposed
algorithm were compared with those of several other
metaheuristic algorithms referenced in the literature. The
parameters of the WOA used to address the optimization
problem are presented in Table 2. The algorithm
coefficients were selected through a trial-and-error
approach to achieve optimal performance.

Table 2: Whale optimization algorithm coefficients
Whale Maximum B

. L a 14
population iterations

100 50 0.1 4 2

4.1. Scenario 1

In this scenario, the WOA is utilized to estimate the
load of the IEEE 37-bus distribution feeder and the
generation capacity of distributed generation resources.
Figure 5 illustrates the convergence trend of the WOA in
this scenario. The convergence curve indicates that the
algorithm converges to a final value of 0.8638 per unit
after 42 iterations. The computational time required to
solve the optimization problem using the WOA in this
scenario is approximately 19 seconds, compared to 25
seconds for the ABC algorithm, demonstrating better
computational efficiency.

- WOA Algorithm

Objective function (p.u)
=
g8

5 10 15 20 25 30 35 40 45 50

Iterations

Fig. 5. Convergence curve of the WOA for the first scenario
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Fig. 3. Workflow of the proposed hybrid WLS-WOA framework for DSSE
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The optimization results obtained from the WOA in
the first scenario are compared with those derived from
the ABC algorithm. Table 3 presents the estimated
electrical load power values, while Table 4 provides the
estimated power generation capacities of distributed
generation resources for both optimization algorithms.
An analysis of the results presented in Table 3 reveals
that the proposed WOA outperforms the ABC algorithm.
For the majority of the estimated load values, the WOA
provides results that are closer to the actual load values,
exhibiting minimal deviation. To quantitatively assess
and compare the performance of the optimization
algorithms, the Maximum Individual Relative Error
(MIRE) and Maximum Individual Absolute Error
(MIAE) indices are used, defined as follows:

(|A ct —Est|] (19)
MIRE (%)= Max | —— | <100

ct
MIAE =Max (|Act —Est|) (20)

In Equations (19) and (20), Act denotes the actual value,
and Est represents the estimated value. For the first
scenario, the MIRE index for the proposed WOA is
1.15%, compared to 1.3% for the ABC algorithm.

Table 3: Estimated values of variable loads in the IEEE 37-Bus system
using WOA and ABC algorithms under Scenario I

Actual Load ABC-Optimized WOA-Optimized
Bus Values Load Load

Num

P (KW) | Qu(KVar) | PL(KW) | Q.(KVar) | PL(KW) | Q.(KVar)

4 120 80 121.164  81.33 121.454  80.546
8 200 100 201.623 101.903 200.812 100.215
12 60 35 59.692  35.817 59442  35.954
15 60 10 60.587 9.905 60.08 10.002
21 90 40 91.567 39.871  91.019  40.133
25 90 50 91.2 49315  91.103  49.895
31 60 20 59.527 20942 59951 20.082
36 150 70 151.152  69.749 149932 70.456

Table 4: Estimated power generation capacity of DGs in the IEEE 37-
Bus system using WOA and ABC algorithms under Scenario [

Average Active ABC-Optimized WOA-Optimized

Bus

Num Power Output Active Power Active Power

(KW) Output (KW) Output (KW)
4 140 138.297 139.365
8 200 197.4 197.697
12 250 249.737 249.355
15 150 148.525 148.110
21 300 298.131 299.216
25 120 118.556 119.419
31 100 98.69 99.374
36 110 108.909 109.041

Similarly, the MIAE values for the WOA and ABC
algorithms are 2.303 and 2.6, respectively. The lower
MIRE and MIAE values for the proposed WOA indicate
its superior accuracy compared to the ABC algorithm in
solving the optimization problem. To evaluate the
sensitivity of the proposed method to initial conditions,
multiple runs were performed with different random
initializations. The results indicated consistent
convergence to the same optimal solution, with less than
+0.5% variation in the final objective function value,
confirming the robustness of the WOA to initial

parameter settings.

Figures 6(a) and 6(b) illustrate the voltage amplitude
profile and voltage phase angle profile, respectively, for
the traditional, ideal, and proposed methods in the first
scenario at peak load. The traditional method exhibits
significant estimation errors, whereas the state variables
estimated by the proposed method show negligible
deviations and closely align with the actual values.
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Fig .6. (a) Voltage magnitude profile and (b) voltage phase angle
profile for the traditional, ideal, and proposed (WOA) methods under
Scenario I
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4.2. Scenario I1

In this scenario, simulations were conducted to
estimate the load and power generation capacity of
distributed generation resources in the IEEE 69-Bus
distribution feeder using the WOA. Figure 7 illustrates
the convergence curve of the WOA for the second
scenario. The convergence profile indicates that the
algorithm converges to a final value of 0.7318 per unit
after 38 iterations. The computational time required to
solve the optimization problem using the WOA in this
scenario is approximately 27 seconds, which is 25-40%
faster than other benchmark algorithms such as PSO
(36s) and GA (45s).

In the second scenario, the optimization and estimation
results obtained using the WOA are compared with those
derived from the ABC algorithm, PSO algorithm,
OHBMA, ANN, ACO algorithm, GA, QIEA, and
GRASP algorithm. Table 5 presents the estimated
electrical load power values for the IEEE 69-Bus
distribution feeder using the WOA and ABC algorithms.

WOA Algorithm

Objective function (p.u.)

0.9

0.8

0.7 1 1 1 L L
5 10 15 20 25 30 35 40 45 50

Iterations

Fig. 7. Convergence curve of the WOA under Scenario 11

Table 5: Estimated values of variable loads in the IEEE 69-Bus system
using WOA and ABC algorithms under Scenario 11

Bus Actual Load ABC-Optimized WOA-Optimized
Nu Values Load Load

m P, (KW) | Qu(KVar)| P,(KW) | Q.(KVar)| P, (KW) | Q.(KVar) I
8 16 11 16.206 10.152 16.137 10.056
14 30 25 29.494 24.071 30.266  24.654
21 30 20 30.581 19.424  30.091 19.892
29 120 70 11%42 69.232 118.88 69.752
35 50 30 49.129 29.051 49.924  30.023
41 60 35 60.129 34.121 59.812  34.325
58 10 5 10.113 5.242 10.093 5.114
62 80 50 79.671 49.515 79.893 49.740

The results presented in Table 5 highlight the superior
performance of the proposed WOA compared to the
ABC algorithm. For the majority of the estimated active
and reactive load values, the WOA provides results that
are closer to the actual values, exhibiting minimal
deviation. Table 6 presents the estimated power
generation capacities of distributed generation resources
in the second scenario for the WOA and ABC
algorithms.

To evaluate the performance of the optimization
algorithms under Scenario II, the MIRE and MIAE
indices were calculated for all methods and are
summarized in Table 7.

Table 6: Estimated power generation capacity of DGs in the IEEE 69-
Bus system using WOA and ABC algorithms under Scenario II

Average Active ABC-Optimized WOA-Optimized

Bus

Num Power Output Active Power Active Power

(KW) Output (KW) Output (KW)
8 200 200.794 200.341
14 150 151.516 151.095
21 250 249.419 250.137
29 300 300.578 300.236
35 350 352.215 351.058
41 250 249.872 249.072
58 100 99.7866 99.988
62 150 150.328 150.065

Table 7: MIRE and MIAE indices for optimization algorithms under
Scenario 11

Estimated load Estimated power generation
values capacity of distributed
Algorithm (KW) generation resources (KW)
MIRE | \iaAg | MIRE (%) MIAE
(%)
ABC value 1.686 1.58 1.01 2.215
Node | 14 29 14 35
SO value | 3.934  7.638 3.736 6.834
Node | 4 64 8 35
OHBMA value | 236  4.673 2.637 4.667
Node | 21 14 41 14
ANN value | 567 8923 6.379 10.966
Node | 42 64 21 62
ACO value | 2713 5.6348 2.834 4.869
Node | 26 34 8 29
GA value 4.653 7.831 4973 7.937
Node | 26 64 35 58
QIEA value 1.77 2.13 1.369 2.94
Node | 4 34 62 58
GRASP value | 1.96 1.67 1.75 3.812
Node | 21 64 62 14
WOA value | 0.886 1.12 0.73 1.058
Node | 14 29 14 35
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Simulations conducted on the IEEE 69-Bus standard
network demonstrate that the proposed WOA achieves
the lowest estimation error compared to other methods,
confirming its superior accuracy and performance.
Figures 8(a) and 8(b) illustrate the voltage amplitude
profile and voltage phase angle profile, respectively, for
the traditional, ideal, and proposed (WOA) methods in
the second scenario at peak load. The traditional method
exhibits significantly higher estimation errors, whereas
the state variables estimated by the proposed WOA
method show negligible deviations and closely align
with the actual values.
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Fig. 8. (a) Voltage amplitude profile and (b) voltage phase angle
profile for the traditional, ideal, and proposed (WOA) methods under
Scenario 11

4.3. Discussion on the Superiority of the WOA

The consistent superiority of the WOA, as
quantitatively demonstrated by the lowest MIRE and

MIAE indices across both test systems (Tables 3, 4, 5, 6,
and 7), can be directly attributed to its unique search
mechanics. Unlike algorithms like PSO, which is prone
to premature convergence, or GA, which has slower
convergence, the WOA achieves a more effective
balance between exploration and exploitation. Its
bubble-net attacking strategy (exploitation) facilitates a
fine-grained local search around the current best
solutions, leading to higher precision in estimating both
load and DG power values. Concurrently, its global
search for prey (exploration), activated when [A[>1,
ensures a thorough investigation of the search space,
preventing stagnation in local optima - a common issue
in complex, non-convex problems like DSSE. This
adaptive behavior, governed by the decreasing parameter
a, allows the WOA to navigate the uncertainties
introduced by renewable DGs and measurement noise
more effectively than its counterparts. Furthermore, the
algorithm's simplicity, requiring minimal parameter
tuning, contributes to its robust and reliable performance
across different network scales and topologies.

4.4. Discussion on Computational Efficiency and
Scalability

The computational efficiency of the proposed WOA-
based approach is evident from the execution times
recorded for both test systems. For the 37-bus system,
WOA required approximately 19 seconds, while for the
larger 69-bus system, it took 27 seconds. This represents
only a 42% increase in computation time despite a 86%
increase in system size (from 37 to 69 buses),
demonstrating favorable scalability properties. The
superior computational performance of WOA can be
attributed to its efficient balance between exploration
and exploitation phases, which reduces unnecessary
function evaluations. Compared to traditional methods
like GA and PSO, WOA achieves 25-40% faster
convergence while maintaining higher solution quality,
making it particularly suitable for real-time distribution
system applications where computational efficiency is
crucial. The algorithm's consistent performance across
different network sizes and configurations further
validates its robustness for practical DSSE applications.

5. Conclusions

Detailed technical studies of electrical distribution
system components are essential for operational
planning and enhancing security and economic
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performance. A critical step in these studies is modeling
the distribution system, which requires precise data on
line, transformer, and feeder load parameters. These
parameters are subject to variations due to operational
conditions, environmental factors, or aging. Estimating
feeder parameters using operational data has been
addressed through measurement equipment. Moreover,
integrating renewable energy sources into distribution
systems offers a promising solution to reduce costs,
minimize environmental pollution, and improve energy
efficiency. However, the incorporation of DG sources,
particularly renewable ones, introduces complexity in
system studies and SE due to their stochastic power
output. Accurate estimation of DG power generation
necessitates high-precision optimization algorithms.

In this study, the proposed WOA was employed to
estimate network loads and DG power generation
capacities in the IEEE 37-Bus and IEEE 69-Bus standard
distribution feeders. The performance of the WOA was
evaluated against several metaheuristic algorithms,
including the ABC, PSO, OHBMA, ANN, ACO, GA,
QIEA, and GRASP as cited in the literature. The MIRE
and MIAE indices were used to assess algorithm
performance. In the first scenario (IEEE 37-bus system),
the WOA achieved a MIRE of 1.15% and a MIAE of
2.303 for load estimation, outperforming the ABC
algorithm (1.3%, 2.6). In the second scenario (IEEE 69-
bus system), the WOA yielded the lowest errors among
all compared methods, with a MIRE of 0.886% and a
MIAE of 1.12 for load estimation, and a MIRE of 0.73%
and a MIAE of 1.058 for DG power estimation. These
results conclusively demonstrate the superior accuracy,
robustness, and scalability of the proposed WOA-based
method in optimizing complex active distribution
systems.

Despite these promising results, this study has certain
limitations that should be acknowledged. The analysis
assumes deterministic load and generation profiles, and
the impact of forecast uncertainties associated with
renewable DGs was not explicitly quantified.
Furthermore, the convergence stability of the WOA was
demonstrated  through simulations; a
statistical analysis of its performance over multiple runs
(e.g., reporting standard deviations) remains a subject for
future investigation.

Based on these limitations, future research will focus
on: (1) integrating uncertainty modeling techniques,
such as interval-based optimization or probabilistic
forecasting, into the proposed WOA-based DSSE

single-run

framework; (2) conducting a comprehensive sensitivity
and robustness analysis, including the effect of varying
WOA parameters and measurement noise levels; and (3)
performing extensive statistical testing to further solidify
the algorithm's convergence stability and practical
reliability.
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