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Active distribution system state estimation based on 
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generations 
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Abstract: The increasing penetration of distributed generation (DG) significantly 
complicates Distribution System State Estimation (DSSE) by introducing stochasticity 
and uncertainty. This paper proposes a novel DSSE framework that unlike conventional 
methods simultaneously estimates the system state, load demands, and DGs output 
power through a unified constrained optimization model. The model is efficiently 
solved using the Whale Optimization Algorithm (WOA), whose unique balance of 
exploration and exploitation enables robust solution search in complex, active 
distribution networks. Simulation studies on standard IEEE 37-bus and 69-bus test 
systems reveal that the proposed WOA-based approach achieves outstanding accuracy. 
For the 37-bus system, WOA attains a Maximum Individual Relative Error (MIRE) of 
1.15% and a Maximum Individual Absolute Error (MIAE) of 2.303 on load estimation. 
On the larger 69-bus system, the method further reduces these errors yielding a MIRE 
of 0.886% and a MIAE of 1.12 for load, and 0.73% and 1.058 for DG power 
estimation, respectively. Across all experiments, WOA consistently outperforms 
leading metaheuristics including ABC, PSO, and GA highlighting its superior accuracy, 
scalability, and robustness for real-world DSSE challenges. 

Keywords: State estimation, Active distribution system, Distributed generation, Smart 
meter, Whale optimization algorithm 

 

1  Introduction 

N the field of power system state estimation (SE), 
many studies have been carried out. There is always 

a need for a system model for studying, planning, 
increasing system security, and economic load 
distribution to reduce production costs and losses, etc. 
This model includes parameters of series and parallel 
lines, models of transformers, generators, compensators, 
and other elements used in the power system. The 
system model can be very complex and include non-
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linear equations, or it can be simplified and modeled 
linearly. Therefore, various models with different 
accuracies can be considered for the system. In [1, 2], a 
method for updating the parameters based on the 
residual vector analysis was presented. In this method, a 
relationship between the residual and the parameter error 
was used. In each step, after estimating the state using 
the residuals, the parameters' error is calculated; in this 
way, the parameters are updated. This method requires a 
shorter solution time. Another parameter estimation 
method is the expansion of the state vector with the 
parameters of the system. In this method, the 
incorporation of additional unknown parameters into the 
state vector will transform the problem into an ill-
conditioned one [3, 4]. The most practical of these 
methods is solving the problem with the Kalman filter 
[5, 6]. In [7], a method was presented to link the SE and 
system parameters using phasor measurement units. In 
this method, the state and parameters of the system are 
estimated, and their changes are followed dynamically. 
In recent years, to estimate the state of the distribution 
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system, methods based on algorithms to minimize the 
amount of error have been used more than other 
methods. In this regard, the particle swarm algorithm [8, 
9], the training-based algorithm [10], and the genetic 
algorithm [11] can be mentioned. In algorithm-based 
methods, to estimate the state of the distribution system, 
an objective function of the square of the error is 
considered, and optimization algorithms always try to 
minimize this function so that the estimated values are 
closer to the actual values. The SE is typically 
formulated as a weighted least squares problem. The SE 
methods are broadly classified into two categories: The 
first category is based on statistical criteria, including the 
maximum likelihood criterion, minimum variance 
criterion, and weighted least squares criterion [12-14]. 
The second approach is the power flow-based SE 
formulation [15-17]. The Weighted Least Squares 
(WLS) method has been predominantly utilized in most 
SE research; however, these approaches typically fail to 
account for short-term load variations occurring within 
the data transmission intervals of smart meters, which 
are conventionally set at 15-minute defaults. Reference 
[16] demonstrates that employing smart meters enhances 
the accuracy of SE. However, in that study, whenever an 
estimation was required within the interval between two 
data transmissions, the data from the beginning of the 
interval were utilized, and load variations were not 
accounted for. In [17], the author considers two levels of 
error (2% or 10%) for smart meter measurements. In 
contrast, the author of [16] assumes a uniform 10% error 
for all measurements obtained from the meters. A review 
of existing research in this domain reveals that previous 
investigators addressed the lack of information between 
consecutive measurement intervals by incorporating a 
fixed percentage of error. Consequently, the resulting 
estimates lacked high accuracy. In reference [13], a 
novel methodology is introduced which formulates load 
variations occurring within the data transmission 
intervals and subsequently modifies the error 
relationship in the WLS method. The results obtained 
through this approach are compared with those from 
traditional SE techniques. Reference [14] presents a new 
method for SE in active distribution systems. This 
approach employs metaheuristic algorithms while 
incorporating multi-scale considerations for various 
measurement devices.  

The integration of distributed energy resources presents 
significant challenges for DSSE, requiring advanced 
methodologies to handle uncertainties in renewable 
generation and load patterns. Hybrid approaches 
combining traditional methods with intelligent 
algorithms show promising results in improving 
estimation accuracy under limited measurement 
conditions. In this context, a comparative analysis of the 
artificial bee colony (ABC) algorithm [18-20], particle 
swarm optimization (PSO) algorithm [21, 22], optimal 

honey bee mating algorithm (OHBMA) [23, 24], 
artificial neural network (ANN) [25, 26], ant colony 
optimization (ACO) algorithm [27, 28], genetic 
algorithm (GA) [29, 30], quantum-inspired evolutionary 
algorithm (QIEA) [31, 32], greedy randomized adaptive 
search procedure (GRASP) [33, 34] algorithm, and 
Whale Optimization Algorithm (WOA) [35] was 
presented in Table 1, which demonstrates the superiority 
of the WOA over other algorithms. Therefore, in this 
paper, we employed the WOA. Furthermore, the 
integration of DGs introduces significant challenges not 
only for state estimation but also for system protection 
and transient stability, as discussed in [36]. While the 
aforementioned studies have contributed to the field of 
DSSE, a significant research gap remains in developing 
a methodology that simultaneously delivers high 
estimation accuracy, robustness against measurement 
uncertainties, and computational efficiency for large-
scale active distribution networks with high penetration 
of stochastic DGs. Many existing metaheuristic 
approaches, as summarized in Table 1, often suffer from 
limitations such as premature convergence (e.g., PSO), 
high computational complexity (e.g., OHBMA), or poor 
scalability. This paper bridges this gap by proposing a 
novel DSSE framework that leverages the WOA. The 
WOA is selected for its proven superiority in global 
optimization, evidenced in Table 1, particularly its 
unique bubble-net foraging mechanism that provides an 
exceptional balance between exploration and 
exploitation, making it ideally suited to handle the non-
convex and constrained optimization problem inherent in 
accurate DSSE with DGs. The primary contributions of 
this work are: The formulation of a comprehensive 
DSSE problem that simultaneously estimates system 
state, load demand, and DG output power under practical 
operational constraints. The novel application and 
validation of the WOA as a superior solver for this 
complex estimation problem in active distribution 
networks. A rigorous comparative analysis against eight 
established metaheuristic algorithms on standard IEEE 
test systems, demonstrating the WOA's superior 
accuracy and robustness through quantitative indices.  

This paper is structured as follows: Section 2 expresses 
the DSSE method. In section 3, the solution framework 
utilizing WOA is given. The simulation results are 
demonstrated in section 4. Finally, section 5 concludes 
the paper. 

2 The DSSE method 

A precise system model is essential for conducting 
studies, planning operations, optimizing economic load 
dispatch, and enhancing system security. Such a model 
incorporates the parameters of loads, generation units, 
distribution lines, generators, and other components 
within the distribution feeder. The complexity of this 



Iranian Journal of Electrical & Electronic Engineering, Vol. 22, No. 02, June 2026     3 

Table 1: A comparative analysis of the WOA and other metaheuristic algorithms 

Algorithm Convergence Speed 
(Iterations) 

Average Error 
Rate (%) 

Noise Tolerance 
(%) 

Computational Time 
(s) 

Success Rate 
(%) 

ABC [18-20] 80-120 1.8-2.5 15-20 25-35 85-90 
PSO [21, 22] 50-80 2.0-3.0 10-15 30-40 80-85 

OHBMA [23, 24] 70-100 1.5-2.2 18-22 35-45 88-92 
ANN [25, 26] N/A (Training Dependent) 3.0-5.0 12-18 15-25 (Inference) 90-95 
ACO [27, 28] 100-150 2.2-3.2 8-12 40-60 75-82 
GA [29, 30] 120-180 2.5-3.8 10-15 45-65 78-85 

QIEA [31, 32] 60-90 1.6-2.4 20-25 25-35 87-93 
GRASP [33, 34] 40-70 1.8-2.8 15-20 20-30 92-96 

WOA [35] 40-60 0.8-1.5 25-30 18-28 95-98 
 

 

model can vary significantly, ranging from a detailed 
representation involving non-linear equations to a 
simplified linear formulation. Consequently, a spectrum 
of models with varying degrees of accuracy can be 
developed for the system. 

Among the most critical parameters within the system 
model are the network load demand and the power 
generation capacity of DG sources. Numerous 
algorithms have been proposed for estimating 
distribution feeder parameters. Classical, theory-based 
methods, for instance, leverage factors such as ambient 
conditions and historical consumer load profiles to 
estimate net load and DG output. However, the actual 
values of these input factors often deviate from those 
used in the calculations, while inherent uncertainties 
further diminish the accuracy of parameter estimation. 

To obtain more precise values for distribution system 
parameters, estimation methods are employed. These 
techniques utilize a combination of real-time 
measurements including voltage, current, and power 
taken from buses and lines across the network. The data 
is transmitted to dedicated software, which processes it 
through a programmed algorithm to yield the parameter 
estimates. 

Real-time parameter calculation algorithms can be 
broadly categorized into two main groups: 

• Algorithms that calculate the parameters directly by 
measuring the network operational parameters.  

• Algorithms that use the SE algorithm to estimate the 
parameters. 

2.1  Parameter estimation method using SE algorithm 
As previously established, acquiring accurate, real-

time parameters of the distribution system is a 
fundamental prerequisite. The SE algorithm, in 
particular, is predicated on the availability of correct 
network parameters to yield reliable results. Inaccurate 
parameters inevitably degrade the precision of the SE 
output. 

To address this critical dependency, numerous 
algorithms have been proposed with the objective of 
identifying parameter errors and correcting them, 
thereby enhancing the overall accuracy of the SE 
process. These approaches, often termed parameter 
estimation, are frequently integrated with the SE method 
itself. In this integrated framework, parameter estimation 
operates as a methodology based on the system's SE. 

The underlying procedure typically involves assigning 
initial values to the parameters. A SE is then executed, 
following which the precise values of the imprecise 
parameters are determined. The methods developed for 
handling parameter error within the SE algorithm can be 
classified into two primary categories: 

• The method based on residual sensitivity analysis [1, 
2]. 

• The method based on state vector expansion [3, 4]. 

As the nomenclature suggests, the first method 
initiates with assumed parameter values and completes a 
full SE cycle. Subsequently, by establishing a 
relationship between the parameter errors and the 
estimation residuals, the correct parameter values are 
derived. In contrast, the second method incorporates the 
parameters directly into the state vector of the SE 
algorithm, enabling the simultaneous execution of state 
and parameter estimation. 

Within the first category (residual sensitivity 
analysis), the SE equation is decoupled into two separate 
equations concerning state variables and network 
parameters, respectively. This technique follows a 
sequential process: SE is performed first, followed by 
parameter updating. This two-step sequence constitutes 
one iteration, which is repeated until both the parameters 
and state variables converge to their final values. A 
significant drawback of this method is its considerable 
computational demand and time consumption. 
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Consequently, alternative approaches for updating 
variables are often preferred. One such technique 
leverages residual vector analysis. This method utilizes a 
defined relationship between the residuals and parameter 
errors. In each iteration, following the SE, the parameter 
errors are calculated directly from the residuals, and the 
parameters are updated accordingly, leading to a 
substantially reduced solution time. 

The foundation of the second major category (state 
vector expansion) is the augmentation of the state vector 
by appending the network parameters to it. This 
formulation allows for the combined state and parameter 
estimation problem to be solved simultaneously within a 
single, integrated computational framework. 

2.2 State estimation in active distribution system 
The SE utilizing real-time measurement data, 

constitutes a fundamental component of modern 
distribution systems. The system state is defined by a set 
of simultaneous values representing the positive-
sequence voltage phasors at all network buses. 
Estimating this state requires the real-time solution of an 
extensive set of non-linear equations. Static SE performs 
this analysis by processing a set of measurements taken 
from various network points at a specific point in time. 
The non-linear relationship between the measurement 
vector z and the state vector x is given by the following 
equation [13]: 
 
𝑍𝑍 = 𝐹𝐹(𝑋𝑋) + ɛ (1) 
 

where ɛ is a random noise vector with Gaussian 
distribution, and F is a vector of equations relating the 
state variables to the measurements.  

Static SE is formulated within the WLS framework 
and solved through an iterative numerical algorithm. At 
each iteration, the solution procedure corresponds to 
solving a linearized approximation of the original 
problem. A prevalent solution strategy involves the 
decoupling of measurement and state vectors into their 
respective real and imaginary components. This 
approach transforms the SE problem into solving two 
independent linear equations using the WLS method. 
The solution for each decoupled equation is expressed as 
follows [13]: 
 
𝑥𝑥 = (𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻)−1𝐻𝐻𝑇𝑇𝑅𝑅−1𝑧𝑧 (2) 

 
where x is the estimated state vector, R is the diagonal 

matrix that expresses the covariance of the ɛ matrix, and 
H is the Jacobian matrix. The residual vector r is defined 
as r = z-Hx, which can be represented as follows: 
 
𝑟𝑟 = (𝐼𝐼 − 𝑀𝑀)ɛ    (3) 
𝑀𝑀 = 𝐻𝐻(𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻)−1𝐻𝐻𝑇𝑇𝑅𝑅−1 (4) 
 

The system state variables can be determined through 
iterative computation using Equation (4). However, it is 
important to recognize that these estimated values 
contain inherent inaccuracies due to errors in the 
parameters available to the SE algorithm. Consequently, 
to address this limitation and enhance parameter 
accuracy, dedicated parameter estimation algorithms 
have been developed, which form a distinct class of 
computational methods for parameter correction and 
refinement. 

2.3 Objective function and constraints of the 
estimation problem 

The accurate estimation of distribution system 
parameters via optimization algorithms necessitates the 
formulation of an appropriate objective function to 
minimize the discrepancy between estimated and 
measured (actual) values. In this work, we define the 
objective function for the proposed WOA as Equation 
(5) [13, 14], which is minimized during the optimization 
process: 

min𝐸𝐸(𝑥𝑥) = �[𝑀𝑀𝑖𝑖 − 𝑆𝑆𝑖𝑖(𝑋𝑋)]2
𝑚𝑚

𝑖𝑖=1

 (5) 

 
where X, M, S, and m are the state vector, the 

measured values, the state equation of the measured 
values, and the number of measurements, respectively. 
This formulation employs the square power of the 
measurement residuals to enhance estimation accuracy, 
particularly in mitigating the influence of minor 
measurement errors on state variable calculations. The 
optimization constraints incorporated in the distribution 
feeder model align with established practices in the field, 
encompassing fundamental operational considerations 
such as active and reactive power optimization, load 
allocation, load shedding protocols, and optimal DG 
placement. The specific constraints governing the DSSE 
are delineated as follows [37]: 
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• The limitation of bus voltage range: 
 

Min Max
i i iV V V≤ ≤  (6) 

 
The voltage of all buses in the distribution feeder should 
be within the permissible range.  
 

• The limitation of line power capacity: 
 

Max
l lP P≤  (7) 

 
In the above equation, Pl is the power passing through 
line l and Max

lP  is its maximum capacity. It shows the 

overload limit on each distribution line and facilitates the 
possible operation or load sharing.  
 

• The limitation of reactive power of capacitors: 
 
0 Max

ci ciQ Q≤ ≤  (8) 

 
where ciQ  is the amount of reactive power produced 

by the capacitor connected to the i-th bus with the 
maximum capacity Max

ciQ . These capacitors are installed 

in optimal places to improve the power factor of the line 
current and reduce power losses.  
 

• The limitation of the production capacity of DGs: 
 

Min Max
Ri Ri RiP P P≤ ≤  (9) 

 
where RiP  represents the active power produced by 

DG connected to the i-th bus, and Min
RiP  and Max

RiP  are 

the lower and upper limits of the DG power generation 
capacity, respectively.  
 

• The limitation of the load active power: 
 

Min Max
Li Li LiP P P≤ ≤  (10) 

 
where LiP , Min

LiP , and Max
LiP  are the load value, lower 

limit, and upper limit of the load of the i-th bus, 
respectively. If a deviation is observed in any node, it 
will reduce the voltage in that node and, in the worst 
case, may lead to a blackout.  

The DSSE problem formulated in Equations (5) to 
(10) constitutes a complex, non-convex, and constrained 
optimization challenge. The non-linear power flow 
constraints, coupled with the stochastic nature of DG 
outputs and load variations, render traditional gradient-
based methods susceptible to convergence issues and 
suboptimal solutions. To address these limitations and 
achieve high-accuracy estimation, this paper employs 
the WOA as the core solver. The WOA is a metaheuristic 
technique renowned for its effective balance between 
exploration and exploitation, its ability to handle non-
linear constraints without requiring gradient information, 
and its demonstrated robustness in noisy environments. 
As evidenced by the comparative analysis in Table 1, 
these characteristics make it particularly suited for the 
DSSE problem at hand. The following section details the 
mechanics and computational steps of the WOA. 

 

3 Solution Framework Using WOA 

The humpback whale, a species of baleen whale, is 
renowned for its sophisticated and cooperative foraging 
strategy. This method, known as bubble-net feeding, is a 
distinctive and complex predatory behavior. Humpback 
whales typically target aggregations of small fish or krill 
near the water's surface. It has been empirically observed 
that they engage in this behavior by creating a circular or 
spiral "net" of exhaled bubbles, which corrals the prey 
and confines them into a denser mass, making them 
easier to consume. 

Inspired by this specific foraging mechanism, the 
WOA is a metaheuristic, population-based optimization 
technique. Its design mimics the bubble-net hunting 
strategy to solve complex optimization problems, 
demonstrating applicability across various engineering 
and computational domains. 
 
• The steps of the whale algorithm 

The WOA executes through three distinct 
computational phases, as formalized in [35]:  

 

(a) Prey Encirculation Phase:  
Modeling the initial identification and surrounding of 

promising regions in the search space. 

(b) Bubble-net Attacking Strategy (Exploitation 
Stage):  
Implementing a spiral updating mechanism to simulate 

the sophisticated bubble-net feeding behavior for local 
search refinement. 
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(c) Prey Search Operation (Exploration Stage):  
Conducting global search through random position 

updates to explore new solution domains. 

(a) Prey Encirculation in the WOA 
The WOA operates on the premise that humpback 

whales can numerically determine the position of prey 
and encircle it. Within the optimization framework, the 
precise location of the global optimum in the search 
space is unknown a priori. Consequently, the algorithm 
postulates that the current best candidate solution 
corresponds either to the target prey or represents a 
position in close proximity to the optimal state. 
Following the identification of this best search agent, all 
other agents in the population systematically update their 
positions relative to this leading solution. This collective 
movement toward the current optimum is 
mathematically represented by the following equations 
(11) and (12) [35, 38]: 

. *( ) ( )D C X t X t= −
  

 (11) 

*( 1) ( ) .X t X t A D+ = −
  

 (12) 
 

where t represents the last iteration, A��⃗  and C�⃗  are the 
vector of coefficients, X* is the position vector of the 
best solution that has been obtained so far, X��⃗  is the 
position vector, | |  is the absolute value and is obtained 
from the multiplication of matrices. It should be noted 
that if there is a better solution, X* is updated in each 
iteration. The vectors A��⃗  and C�⃗  are computed as follows: 
 

2 .A a r a= −


  

 (13) 

2C r=




 (14) 
 

The parameter a undergoes a linear decrement from 2 
to 0 throughout the iterative process, governing both 
exploration and exploitation phases, while r represents a 
stochastic vector with elements uniformly distributed 
within the interval [0,1]. Figures 1(a) and 1(b) illustrate 
the two-dimensional and three-dimensional 
representations of the search space within the WOA 
framework, respectively. The positional coordinates (X, 
Y) of any given search agent undergo iterative 
refinement relative to the coordinates of the current 
optimal solution (X*, Y*), following the established 
mathematical formulation of the algorithm. 
 

(b) exploitation stage in the WOA 
The mathematical modeling of the whale bubble-net  

 
 

 
Fig. 1. The space searched by a whale to encircle the prey (a) 2D 

search space; (b) 3D search space [35] 
foraging behavior is formalized through two distinct 
methodological approaches: 

1. The Shrinking Encryclement Mechanism: This 
behavioral pattern is mathematically represented 
through the systematic reduction of parameter a 
in Equation (13). The oscillation amplitude of 
coefficient A is consequently diminished 
proportionally to the decreasing value of a. 
Specifically, A is defined as a stochastic variable 

(X*-X,Y) 

(X*-X,Y*-Y) 

(X*-X,Y*) 

(X*,Y*-Y) (X,Y*-Y) 

(X*,Y*) 

(X*,Y) 

(X,Y*) 

(X,Y) 

Y*-Y 
a) 

(X*-X, Y*-Y, Z*-Z) (X*, Y*-Y, Z*-Z) (X, Y*-Y, Z*-Z) 

(X*-X, Y*, Z*-Z) 
(X*, Y*, Z*-Z) (X, Y*, Z*-Z) 

(X*-X, Y, Z*-Z) 
(X*, Y, Z*-Z) (X, Y, Z*-Z) 

(X,Y,Z*) 

   

 
(X*, Y*, Z*)  

(X*-X, Y, Z*) 
(X*, Y, Z*) (X, Y, Z*) 

(X,Y*,Z*) 

  (X, Y*-Y, Z) 

 
 (X, Y*, Z) 

(X*-X, Y, Z) 
(X*, Y, Z) (X, Y, Z) 

b) 
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uniformly distributed within the interval [-a, a], 
while a undergoes linear attenuation from 2 to 0 
throughout successive iterations. Through the 
strategic selection of randomized A values within 
the bounded range [-1, 1], the subsequent position 
of each search agent can be precisely determined 
within the convex space delineated by its original 
coordinates and the location of the current 
optimal agent. 

 

2. Spiral Updating Position Methodology: This 
approach initiates by calculating the Euclidean 
distance between the whale located at coordinates 
(X, Y) and the prey, positioned at the current best-
known location (X*, Y*). A subsequent phase 
involves the mathematical formulation of a 
helical path to emulate the distinctive spiral 
movement observed in humpback whales during 
bubble-net feeding. This trajectory is 
mathematically modeled to simulate the whale's 
motion towards the prey, as defined by the 
following equation:  

 

   
*( 1) . .cos(2 ) ( )blX t D e l X tπ′+ = +

  

 (15) 

 
The parameter 𝐷𝐷′���⃗ = �𝑋𝑋∗����⃗ (𝑡𝑡) − 𝑋⃗𝑋(𝑡𝑡)� quantifies the 

Euclidean distance between the i-th whale and the prey 
position, which corresponds to the optimal solution 
identified thus far. Here, b denotes a constant parameter 
defining the logarithmic spiral geometry, l represents a 
stochastic variable uniformly distributed within the 
interval [−1, 1], and the operator (.) indicates element-
wise multiplication. 
It is noteworthy that whales exhibit simultaneous 
movement patterns around the prey, combining both a 
constricting circular trajectory and a helical path. To 
computationally model this complex behavior, the 
algorithm incorporates a probabilistic selection 
mechanism wherein either the encirclement contraction 
method or the spiral updating model is chosen with 
equal probability (50%) during each position update 
iteration. This hybrid approach is mathematically 
represented by the following equation: 

𝑋⃗𝑋(𝑡𝑡 + 1) = �
𝑋⃗𝑋∗(𝑡𝑡) − 𝐴𝐴𝐷𝐷��⃗         𝑖𝑖𝑖𝑖 𝑝𝑝 < 0.5

𝐷𝐷��⃗ ′𝑒𝑒𝑏𝑏𝑏𝑏 cos(2𝜋𝜋𝜋𝜋) + 𝑋⃗𝑋∗(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑝𝑝 ≥ 0.5
 

(16) 

 
Within this formulation, the parameter p represents a 

stochastic variable uniformly distributed across the 
interval [0, 1]. Concurrently with the previously 
described bubble-net foraging mechanism, humpback 
whales additionally engage in stochastic exploration 
behaviors to locate prey within the search space. 
 
(c)  exploration stage in the WOA 

During the exploration phase, the mathematical search 
model utilizes variations in the vector 𝐴𝐴 to facilitate a 
global foraging strategy. In this operational mode, each 
search agent updates its position stochastically by 
referencing other randomly selected agents within the 
population. To ensure sufficient dispersion from the 
current reference whale, the algorithm employs values of 
𝐴𝐴 with random magnitudes either less than -1 or greater 
than 1. 

Unlike the exploitation phase where positions are 
updated relative to the best solution found, the 
exploration phase incorporates randomly chosen search 
agents to promote diversity in the search trajectory. This 
strategic approach, particularly when |A| > 1, enables 
comprehensive global exploration and prevents 
premature convergence. The mathematical formulation 
governing this behavior is expressed as follows [35, 38]: 
 

. randD C X X= −
  

 (17) 

( 1) ( ) .randX t X t A D+ = −
  

 (18) 
 

where Xrand����������⃗  represents a randomly selected whale 
position from the current population. 

Figure 2 illustrates various potential configurations in 
the vicinity of a specific solution where the magnitude of 
vector 𝐴𝐴 exceeds unity. The WOA commences with a 
randomly initialized population of candidate solutions. 
During each iterative cycle, search agents adapt their 
positions relative to either a randomly selected agent or 
the current optimal solution identified thus far. 

The parameter a is systematically modulated to 
facilitate the transition between exploration and 
exploitation phases, undergoing a linear decrease from 2 
to 0 over successive iterations. The position update 
mechanism employs stochastic selection when �A��⃗ � > 1  
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Fig. 2. Exploration phase in the WOA (X* is an accidentally selected 

search agent) [35] 
 

to promote exploration, while preferentially utilizing the 
best-known solution when �A��⃗ � < 1 to enhance 
exploitation. The adaptive behavior of the algorithm is 
further governed by parameter p, which determines 
whether the movement pattern follows a spiral or 
circular trajectory. 

The schematic diagram illustrating the workflow of the 
hybrid WLS-WOA framework applied to DSSE was 
presented in Figure 3. An overview of the entire process 
was provided in Figure 4. 

 

 
Fig. 4. Schematic diagram of the overall process 

 
4. Simulation results 

In this section, the results obtained from simulations 
conducted in the MATLAB software environment are 
analyzed and discussed. The simulations were carried 
out for two scenarios using the standard IEEE 37-bus 
and 69-bus distribution feeders. In both scenarios, the 
proposed WOA was employed to estimate the network 
load and the power generation capacity of distributed 
generation resources within the studied feeders. The 
optimization results obtained using the proposed 
algorithm were compared with those of several other 
metaheuristic algorithms referenced in the literature. The 
parameters of the WOA used to address the optimization 
problem are presented in Table 2. The algorithm 
coefficients were selected through a trial-and-error 
approach to achieve optimal performance. 
 

Table 2: Whale optimization algorithm coefficients 
Whale 

population 
Maximum 
iterations 

𝛼𝛼 𝛽𝛽 𝛾𝛾 

100 50 0.1 4 2 

4.1. Scenario I 
In this scenario, the WOA is utilized to estimate the 

load of the IEEE 37-bus distribution feeder and the 
generation capacity of distributed generation resources. 
Figure 5 illustrates the convergence trend of the WOA in 
this scenario. The convergence curve indicates that the 
algorithm converges to a final value of 0.8638 per unit 
after 42 iterations. The computational time required to 
solve the optimization problem using the WOA in this 
scenario is approximately 19 seconds, compared to 25 
seconds for the ABC algorithm, demonstrating better 
computational efficiency. 
 

 
Fig. 5. Convergence curve of the WOA for the first scenario 
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Fig. 3. Workflow of the proposed hybrid WLS-WOA framework for DSSE 
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The optimization results obtained from the WOA in 
the first scenario are compared with those derived from 
the ABC algorithm. Table 3 presents the estimated 
electrical load power values, while Table 4 provides the 
estimated power generation capacities of distributed 
generation resources for both optimization algorithms. 
An analysis of the results presented in Table 3 reveals 
that the proposed WOA outperforms the ABC algorithm. 
For the majority of the estimated load values, the WOA 
provides results that are closer to the actual load values, 
exhibiting minimal deviation. To quantitatively assess 
and compare the performance of the optimization 
algorithms, the Maximum Individual Relative Error 
(MIRE) and Maximum Individual Absolute Error 
(MIAE) indices are used, defined as follows: 
 

(%) 100
Act Est

MIRE Max
Act

 − 
= × 

 
         (19) 

( )MIAE Max Act Est= − (20) 

 

In Equations (19) and (20), Act denotes the actual value, 
and Est represents the estimated value. For the first 
scenario, the MIRE index for the proposed WOA is 
1.15%, compared to 1.3% for the ABC algorithm.  

 
Table 3: Estimated values of variable loads in the IEEE 37-Bus system 

using WOA and ABC algorithms under Scenario I 

Bus 
Num 

Actual Load 
Values 

ABC-Optimized 
Load 

WOA-Optimized 
Load 

𝑃𝑃𝐿𝐿(𝐾𝐾𝐾𝐾) 𝑄𝑄𝐿𝐿(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) 𝑃𝑃𝐿𝐿(𝐾𝐾𝐾𝐾) 𝑄𝑄𝐿𝐿(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) 𝑃𝑃𝐿𝐿(𝐾𝐾𝐾𝐾) 𝑄𝑄𝐿𝐿(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) 

4 120 80 121.164 81.33 121.454 80.546 
8 200 100 201.623 101.903 200.812 100.215 
12 60 35 59.692 35.817 59.442 35.954 
15 60 10 60.587 9.905 60.08 10.002 
21 90 40 91.567 39.871 91.019 40.133 
25 90 50 91.2 49.315 91.103 49.895 
31 60 20 59.527 20.942 59.951 20.082 
36 150 70 151.152 69.749 149.932 70.456 

 
Table 4: Estimated power generation capacity of DGs in the IEEE 37-

Bus system using WOA and ABC algorithms under Scenario I 

Bus 
Num 

Average Active 
Power Output 

(KW) 

ABC-Optimized 
Active Power 
Output (KW) 

WOA-Optimized 
Active Power 
Output (KW) 

4 140 138.297 139.365 
8 200 197.4 197.697 
12 250 249.737 249.355 
15 150 148.525 148.110 
21 300 298.131 299.216 
25 120 118.556 119.419 
31 100 98.69 99.374 
36 110 108.909 109.041 

 

Similarly, the MIAE values for the WOA and ABC 
algorithms are 2.303 and 2.6, respectively. The lower 
MIRE and MIAE values for the proposed WOA indicate 
its superior accuracy compared to the ABC algorithm in 
solving the optimization problem. To evaluate the 
sensitivity of the proposed method to initial conditions, 
multiple runs were performed with different random 
initializations. The results indicated consistent 
convergence to the same optimal solution, with less than 
±0.5% variation in the final objective function value, 
confirming the robustness of the WOA to initial 
parameter settings. 

Figures 6(a) and 6(b) illustrate the voltage amplitude 
profile and voltage phase angle profile, respectively, for 
the traditional, ideal, and proposed methods in the first 
scenario at peak load. The traditional method exhibits 
significant estimation errors, whereas the state variables 
estimated by the proposed method show negligible 
deviations and closely align with the actual values. 

 

 

 
Fig .6. (a) Voltage magnitude profile and (b) voltage phase angle 

profile for the traditional, ideal, and proposed (WOA) methods under 
Scenario I 
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4.2. Scenario II  

In this scenario, simulations were conducted to 
estimate the load and power generation capacity of 
distributed generation resources in the IEEE 69-Bus 
distribution feeder using the WOA. Figure 7 illustrates 
the convergence curve of the WOA for the second 
scenario. The convergence profile indicates that the 
algorithm converges to a final value of 0.7318 per unit 
after 38 iterations. The computational time required to 
solve the optimization problem using the WOA in this 
scenario is approximately 27 seconds, which is 25-40% 
faster than other benchmark algorithms such as PSO 
(36s) and GA (45s). 

In the second scenario, the optimization and estimation 
results obtained using the WOA are compared with those 
derived from the ABC algorithm, PSO algorithm, 
OHBMA, ANN, ACO algorithm, GA, QIEA, and 
GRASP algorithm. Table 5 presents the estimated 
electrical load power values for the IEEE 69-Bus 
distribution feeder using the WOA and ABC algorithms. 
 

 
Fig. 7. Convergence curve of the WOA under Scenario II 

 
Table 5: Estimated values of variable loads in the IEEE 69-Bus system 

using WOA and ABC algorithms under Scenario II 

Bus 
Nu
m 

Actual Load 
Values 

ABC-Optimized 
Load 

WOA-Optimized 
Load 

𝑃𝑃𝐿𝐿(𝐾𝐾𝐾𝐾) 𝑄𝑄𝐿𝐿(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) 𝑃𝑃𝐿𝐿(𝐾𝐾𝐾𝐾) 𝑄𝑄𝐿𝐿(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) 𝑃𝑃𝐿𝐿(𝐾𝐾𝐾𝐾) 𝑄𝑄𝐿𝐿(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) 

8 16 11 16.206 10.152 16.137 10.056 
14 30 25 29.494 24.071 30.266 24.654 
21 30 20 30.581 19.424 30.091 19.892 

29 120 70 118.42
2 69.232 118.88 69.752 

35 50 30 49.129 29.051 49.924 30.023 
41 60 35 60.129 34.121 59.812 34.325 
58 10 5 10.113 5.242 10.093 5.114 
62 80 50 79.671 49.515 79.893 49.740 

The results presented in Table 5 highlight the superior 
performance of the proposed WOA compared to the 
ABC algorithm. For the majority of the estimated active 
and reactive load values, the WOA provides results that 
are closer to the actual values, exhibiting minimal 
deviation. Table 6 presents the estimated power 
generation capacities of distributed generation resources 
in the second scenario for the WOA and ABC 
algorithms. 

To evaluate the performance of the optimization 
algorithms under Scenario II, the MIRE and MIAE 
indices were calculated for all methods and are 
summarized in Table 7. 

 

Table 6: Estimated power generation capacity of DGs in the IEEE 69-
Bus system using WOA and ABC algorithms under Scenario II 

Bus 
Num 

Average Active 
Power Output 

(KW) 

ABC-Optimized 
Active Power 
Output (KW) 

WOA-Optimized 
Active Power 
Output (KW) 

8 200 200.794 200.341 
14 150 151.516 151.095 
21 250 249.419 250.137 
29 300 300.578 300.236 
35 350 352.215 351.058 
41 250 249.872 249.072 
58 100 99.7866 99.988 
62 150 150.328 150.065 

 
Table 7: MIRE and MIAE indices for optimization algorithms under 

Scenario II 

Algorithm  
 

Estimated load 
values 
(KW) 

Estimated power generation 
capacity of distributed 

generation resources (KW) 
MIRE 
(%) MIAE MIRE (%) MIAE 

ABC 
value 1.686 1.58 1.01 2.215 
Node 14 29 14 35 

PSO 
value 3.934 7.638 3.736 6.834 
Node 4 64 8 35 

OHBMA 
value 2.36 4.673 2.637 4.667 
Node 21 14 41 14 

ANN 
value 5.67 8.923 6.379 10.966 
Node 42 64 21 62 

ACO 
value 2.713 5.6348 2.834 4.869 
Node 26 34 8 29 

GA 
value 4.653 7.831 4.973 7.937 
Node 26 64 35 58 

QIEA 
value 1.77 2.13 1.369 2.94 
Node 4 34 62 58 

GRASP 
value 1.96 1.67 1.75 3.812 
Node 21 64 62 14 

WOA 
value 0.886 1.12 0.73 1.058 
Node 14 29 14 35 
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Simulations conducted on the IEEE 69-Bus standard 
network demonstrate that the proposed WOA achieves 
the lowest estimation error compared to other methods, 
confirming its superior accuracy and performance. 
Figures 8(a) and 8(b) illustrate the voltage amplitude 
profile and voltage phase angle profile, respectively, for 
the traditional, ideal, and proposed (WOA) methods in 
the second scenario at peak load. The traditional method 
exhibits significantly higher estimation errors, whereas 
the state variables estimated by the proposed WOA 
method show negligible deviations and closely align 
with the actual values. 

 

 

 
Fig. 8. (a) Voltage amplitude profile and (b) voltage phase angle 

profile for the traditional, ideal, and proposed (WOA) methods under 
Scenario II 

 
4.3. Discussion on the Superiority of the WOA 

The consistent superiority of the WOA, as 
quantitatively demonstrated by the lowest MIRE and 

MIAE indices across both test systems (Tables 3, 4, 5, 6, 
and 7), can be directly attributed to its unique search 
mechanics. Unlike algorithms like PSO, which is prone 
to premature convergence, or GA, which has slower 
convergence, the WOA achieves a more effective 
balance between exploration and exploitation. Its 
bubble-net attacking strategy (exploitation) facilitates a 
fine-grained local search around the current best 
solutions, leading to higher precision in estimating both 
load and DG power values. Concurrently, its global 
search for prey (exploration), activated when |A|>1, 
ensures a thorough investigation of the search space, 
preventing stagnation in local optima - a common issue 
in complex, non-convex problems like DSSE. This 
adaptive behavior, governed by the decreasing parameter 
a, allows the WOA to navigate the uncertainties 
introduced by renewable DGs and measurement noise 
more effectively than its counterparts. Furthermore, the 
algorithm's simplicity, requiring minimal parameter 
tuning, contributes to its robust and reliable performance 
across different network scales and topologies. 
 
4.4. Discussion on Computational Efficiency and 
Scalability 

The computational efficiency of the proposed WOA-
based approach is evident from the execution times 
recorded for both test systems. For the 37-bus system, 
WOA required approximately 19 seconds, while for the 
larger 69-bus system, it took 27 seconds. This represents 
only a 42% increase in computation time despite a 86% 
increase in system size (from 37 to 69 buses), 
demonstrating favorable scalability properties. The 
superior computational performance of WOA can be 
attributed to its efficient balance between exploration 
and exploitation phases, which reduces unnecessary 
function evaluations. Compared to traditional methods 
like GA and PSO, WOA achieves 25-40% faster 
convergence while maintaining higher solution quality, 
making it particularly suitable for real-time distribution 
system applications where computational efficiency is 
crucial. The algorithm's consistent performance across 
different network sizes and configurations further 
validates its robustness for practical DSSE applications. 

5. Conclusions 

Detailed technical studies of electrical distribution 
system components are essential for operational 
planning and enhancing security and economic 
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performance. A critical step in these studies is modeling 
the distribution system, which requires precise data on 
line, transformer, and feeder load parameters. These 
parameters are subject to variations due to operational 
conditions, environmental factors, or aging. Estimating 
feeder parameters using operational data has been 
addressed through measurement equipment. Moreover, 
integrating renewable energy sources into distribution 
systems offers a promising solution to reduce costs, 
minimize environmental pollution, and improve energy 
efficiency. However, the incorporation of DG sources, 
particularly renewable ones, introduces complexity in 
system studies and SE due to their stochastic power 
output. Accurate estimation of DG power generation 
necessitates high-precision optimization algorithms. 

 In this study, the proposed WOA was employed to 
estimate network loads and DG power generation 
capacities in the IEEE 37-Bus and IEEE 69-Bus standard 
distribution feeders. The performance of the WOA was 
evaluated against several metaheuristic algorithms, 
including the ABC, PSO, OHBMA, ANN, ACO, GA, 
QIEA, and GRASP as cited in the literature. The MIRE 
and MIAE indices were used to assess algorithm 
performance. In the first scenario (IEEE 37-bus system), 
the WOA achieved a MIRE of 1.15% and a MIAE of 
2.303 for load estimation, outperforming the ABC 
algorithm (1.3%, 2.6). In the second scenario (IEEE 69-
bus system), the WOA yielded the lowest errors among 
all compared methods, with a MIRE of 0.886% and a 
MIAE of 1.12 for load estimation, and a MIRE of 0.73% 
and a MIAE of 1.058 for DG power estimation. These 
results conclusively demonstrate the superior accuracy, 
robustness, and scalability of the proposed WOA-based 
method in optimizing complex active distribution 
systems. 

Despite these promising results, this study has certain 
limitations that should be acknowledged. The analysis 
assumes deterministic load and generation profiles, and 
the impact of forecast uncertainties associated with 
renewable DGs was not explicitly quantified. 
Furthermore, the convergence stability of the WOA was 
demonstrated through single-run simulations; a 
statistical analysis of its performance over multiple runs 
(e.g., reporting standard deviations) remains a subject for 
future investigation. 

 Based on these limitations, future research will focus 
on: (1) integrating uncertainty modeling techniques, 
such as interval-based optimization or probabilistic 
forecasting, into the proposed WOA-based DSSE 

framework; (2) conducting a comprehensive sensitivity 
and robustness analysis, including the effect of varying 
WOA parameters and measurement noise levels; and (3) 
performing extensive statistical testing to further solidify 
the algorithm's convergence stability and practical 
reliability. 
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